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ABSTRACT

Some further preliminary results are reported on the appli-
cation of the plasma kinetic theory of Prigogine and Balescu to a plasma
column in a uniform magnetic field. At the cost of ignoring collective
effects, the assumption of initial gyrotropy is removed. A relatively
simple kinetic equation for the one particle distribution function is
obtained. The resulting augmented kinetic theory is expected to
describe a greater variety of diffusion phenomena. A multicomponent
plasma is considered, but the effect of the macroscopic transverse
electric field (due to charge separation) on the local interactions has
not yet been calculated. The plasma is assumed to be homogeneous in
the direction of the magnetic field, but an arbitrary inhomogeneity
across the field is allowed. A collision integral due to Eleonskif,
Zyryanov, and Silin can be reproduced as a special case. Contact is
also made with the recent work by Sundaresan on the homogeneous non-
gyrotropic plasma. A method of properly including collective effects is

suggested.
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INTRODUCTION AND SUMMARY

The following material is intended as a supplement to that in
a previous reportl, to be referred to as "IVa", on the kinetic theory
of diffusion of a plasma column across a constant uniform magnetic field.
That work consisted of an extension of the theory of Prigogine, Balescu,
and co-workers; see for example reference 2. The problem of deriving a
kinetic equation (analogous to the well-known Balescu-Lenard-Guernsey
equation) was reduced to that of solving a two-dimensional Fredholm
integral equation with a complicated kernel. No explicit restriction
was made concerning the amplitude or length scale of the inhomogeneity

across the magnetic field.

The usefulness of this result was somewhat limited. Even if
the solution of the Fredholm equation could be obtained in closed form,
the resulting kinetic equation would be extremely lengthy and complicated,
because of the collective terms associated with the long-range Coulomb
interaction. These terms are made more complicated than usual by the
transverse inhomogeneity. Furthermore, a strong initial condition was
introduced; namely that the distribution of velocity components perpendic-
ular to the magnetic field be isotropic. A correspondingly strong theorem
was derived, namely that the condition is preserved in time within the
approximations made. However, the assumption was obviously a restriction
on the types of tramsport phenoména that the theory can describe. 1If
across any interface element tangential to the magnetic field, there were
as many particles of a given speed going in one direction as in the opposite

direction (which is not quite equivalent to the assumption), then the



diffusion would necessarily be similar to that described by Fick's Law.
(In fact, some currents were allowed, because the "gyrotropy" is for a
fixed guiding center rather than for a local‘region. But this considera-

tion tends to make the assumption less plausible rather than more plausible.)

The main content of this report is a derivation of a single short
kinetic equation for a one particle distribution function having an
arbitrary anisotropy in velocity space. The only restriction on the
initial distribution (apart from the usual initial conditions of the
Prigogine theory) is that it be homogeneous in the direction of the
magnetic field. The "gyrotropic" initial condition is avoided. The
result is analogous to the Boltzmann equation for weakly coupled ionized
gases, also known as the Landau equation. It is obtained by ignoring
the complicated collective terms. The long-range divergence difficulty
could be eliminated either by introducing one of the collective factors
found for other models, or by introducing some simple cutoff procedure,

as is done for the Landau equation.

In concurrent and independent research, Sundaresan3 has
developed the Bogoliubov theory for a homogeneous nongyrotropic plasma
including collective effects. In the concluding discussion, we make some
provisional remarks on the comparison of our result for the homogeneous
case with Sundaresan's result, when his collective factors are ignored.

In addition, it is shown that for the gyrotropic plasma with an in-
homogeneity in only one direction, our result reduces to the result of
EleonskiY, Zyryanov, and Silin4 when their collective factors are ignored.
(We regret that our previous report IVa misquoted their result.) It is

hoped that future reports will contain more detailed comparisons of the
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various results reported in the literature, as well as descriptions of

the quantitative and qualitative properties of the kinetic equatioms.

We should not rule out the possibility of properly including
collective effects for the present model; that is, of constructing a
simple kinetic equation of the Balescu-Lenard-Guernsey type for a non-
gyrotropic plasma having an arbitrary transverse inhomogeneity. At the
time of writing, however, such a construction appeared to present some
difficulties. One possible approach is mentioned in the concluding

discussion.

Qur derivation contains another generalization, namely to a
plasma consisting of more than one species of particles. However, we
still do not have a kinetic theory of transverse ambipolar diffusion.
Different species may have different diffusion rates. The resulting
charge separation would produce growing macroscopic electric fields.

The effect of such electric fields on the local interactions responsible

for the diffusion has been ignored.

It should be emphasized that when leaving out the collective
terms, we may be omitting very important effects. For example, it is
very likely that a study of the generalized dielectric function

@(ﬂ - q') - K(q, ﬂ')]found in Section IVa.7 will give conditions of
stability and instability on the distfibution of guiding centers as well
as on the velocity distribution. Thus in a sense we have the possibility

of finding macroscopic instabilities from microinstability theory.



CALCULATION

Only the differences between this derivation and that in IVa
are present here. Those interested in further details should refer to
IVa, and to works referred to there. We will call attention to a few
changes in notation, but otherwise the symbols have the same meaning
as before. The main change is the replacement of some of the
distinguishing labels a, h, u, ... by 1l, 2, 3, ... . Numerical
subscripts are more convenient when the diagram technique is not being
emphasized. (The symbol o 1is used here to distinguish different
species.) Another change is the use of 2 for gyrofrequéncies, which

allows us to use w, w for certain important variables similar

g2 e

to those previously denoted by G, G . It is hoped that these

JORRE

and other minor changes will result in a net reduction of confusion.

We consider a multicomponent plasma with No particles of
the o-th species, having charge e, and mass mo . The plasma is

neutral in the sense that

The limit {N + =, A » », N/A finite, f arbitrary} will be considered,
where N = ZUNO . The canonical momentum of particle number j is

written as

)

m,v, + (e

1Y /e) A (x

3 3

where mj and ej are abbreviations for m and e, - Its gyrofrequency
3 ]
is denoted by Qj
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Q, Z e, B/m,c
g = ey B/mge
where B 1s a constant magnetic flux density. As before, we often think

of Qj and ej as positive, to avoild the concept of negative frequencies.

This mnemonic device will not affect the final results.

Again, the classical non-relativistic approximation is made.
Radiation and surface effects are ignored. The plasma is assumed to be
initially homogeneous in the direction z = B/B , but is allowed to have
an arbitrary inhomogeneity in the directions X and ? . The time scale

-1
|

is assumed to be much larger than uw o-l and ] Q » where

g

- 2. 1/2
wpo = (lmeo Nc/moAz )

The Hamiltonian of the system is

H=H_+X ] V,

4 ’ (1)
i<y

where H = Zj -%-mjvj2 is the Hamiltonian excluding the interparticle

Coulomb interaction (but including the magnetic field, which does not
contribute to the kinetic energies of the particles), and A is a
coupling parameter to be set equal to unity after the dominant terms of
the perturbation series have been selected. The potential V is

ij

defined as follows:

V,, =V + W . (2a)
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1
Vi nt(§1j) = (eiej/ lzijl) exP(-Klzijl)

| 1/2
= (21/A) {k” ” ds, (‘,ijinc([kuz + Ile 1Y

: eXP(ikl'zij) exp(if - 5153, (2b)
1/2
A int 2 2 2 2 2 2, .
Vij ([k” + 2.* ] ) = eiej/ZTr (k" + 2,7+ k") ; (2¢)
A2 dz
- - -1 int .
wij(zij) A Vij (iij) H (3)
-h/2

where k” is summed over values of the form (2n/A) ¢ (integer), and «
is a cut-off parameter which must be held non-zero when coliective
effects are ignored. The symbol Eij is an abbreviation for x, - b

We sometimes write k, £ 1in place of kll, &¢‘ Combining eqs. (2) and

(3), we get
Vyy(xgy) = @r/) L f dg

. g g 12

. Vij([k + 271 ) eXP(ikzij) exp(ig - 313;) , (4a)
eiej/an(kz + 22 + K2) , k#0
9 2 2 1/2 )
ij([k +27] ) =
o , k=0
L
Kr
e.e . [1 -6 (k)]

- 24 ; i (4b)

w2k + 22 + 2
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The introduction of the potential wij is a device intended
to eliminate the macroscopic self-consistent electric field. Mathematically
speaking, it eliminates the matrix elements of 6Lij which are diagonal

9
with respect to the k, s. The collisfonless ''drift" terms of the type

3
(EXB/ B2) - 3f/3x could be added to the resulting equations, but
cross—effects between local interactions and the macroscopic transverse
electric field are ignored.

A physical picture of the effect of wij can be constructed
if desired. It is analogous to the concept of a background charge whose
local density somehow varies in time with the plasma density. Associated
with each particle j one can imagine a rigid massless line charge in the

z direction with charge density - e, /A, which pierces the particle

i
(cf. eq. (3)). The line charges are caiiicd alcng with their narticles
without reacting upon them, and without interacting among themselves.

However, the motion of each particle is influenced by the presence of

the line charges tied to the other particles.

We now write down the formal solution of the Liouville
equation. It is almost the same as that given in Section IVa, 3.

]
If »o {k}{n}(t) is defined by the equation

£.(0) = § ] o (t) exp(1 | [k,z, - n.0,1), (s)
N (£} 1o} {k}{n} | j 313 h

then

(t) = 2—11; ‘% dz exp(- 1zt) § [(-0)?

p'
(.} n () c q=0
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1l q
. (o) (o) _
lg‘kj vypt ey 8 - z(u), Z(u) )
{k*"7} {n*""} iu<hu

(u-1) }

(u-1)
({kj } {n SL,

(u) ),
3 n (k) ta, Y )

3

-1
(u) ) _ !
[ § (k™ vy + g 2,) - ¢l }

p 1 , 6)
RN

where
i} tn) , oLy, | ) ) >

N ) ]
Kr Kr _
= [ 2 J (kj -k j) $ (nJ n j)]

29
J=J

Kr [ [ _ Kr _ [

] t
* 2 - ee, exp(i[nl + n,-n,-n 2]B)
. LdL dB 2 2 2
ﬂA([kl - k'1] + 27 + x7)

(o] Q

! 1 9 1 9
oo (& 5 - 4)
[ 1 1l ml 3V1“ m2 3V2“

—— ———
- e —— m



- @x - )
mlﬂl Bgl mzﬂz 392 I
- s
2v1:\ §£v21X
) Yo, - n' 2, . o' - \ T,
1 1 "1 Mm%
+ ; ' Zvll 5 2“’21.\';
n, - n Q n', - n Q, |
1 1 N1 ) 2 2 2/

exp(if - ) . @)
m Vi Bvl_L mVoey av2l g'12

The reduced distribution functions are easily defined for a
multispecies plasma. In specifying the expected number of r-tuples
of particles, one must be careful to distinguish between species.
Thus factors like

r

no/m°
g [s)

will appear, where T, is the number of times o appears in the
set 0,, ... , 0_ . These, however, cause no problem. One obtains,
1 T

for example,

2,-1
U2(1,2) = (No No / A7)

1 ) f2’2(1,2) - fo,l(l)fo,l(Z)

12 1 2

N-2 "k -k n, n,® (8)

2n z
k (#0) nln224 12

A

. exp(—inle1 - in262) exp(ikzlz) ,
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since fl 1 1s independent of z - Here,
%}' = [ I e e o I
N-r r+l r+2 N
N-r N-r N-r N 3
H I d 91 d vj” d vj [n 21rmj vjl . (9)
J=rtl

and

121 2 N 12 1 2
kX ~k n, n, - (A7 2m) A" p k =k n, n

172 172

Initial condition§ are then specified as in Section IVa . 4,
with the exception of the condition of gyrotropy (IVa.A.G). Its
removal does not affect the general diagram perturbation theory to any
great extent, provided one assumes as always that very large values of
the n's are irrelevant in some sense. One should also remember that

Z;N—r p{k}{n} is irrelevant unless nj =0, j>r.

Concerning the A-dependence of the initial distributioms,

one point may be worth noting. We assume that

' o '
P {o}{n}(o) (x: Ap {O}{O}(o) ’

'12 1!
P Tk ktmy @ CEAe (510} s ete. (10)
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These assumptions are slightly stronger than the analogous assumption
(Iva. 5.1) for the gyrotropic case, because the equilibrium distributions

give no guide as to the order of magnitude of the nongyrotropic components.

We write

£(1) = fl,l(l) = (N1 / A)fo 1(l). (11)

The contribution to £(1,t) from a cycle diagram is as follows:

Ny
f(1)) = ... + Y 2 exp(- inlel) Z

I I % = <§ dz exp(- 1zt)

n1 n2 C
2 -1 2n .
c -0 Mma, - =) n,[12]>
11 A k(+0)§‘ 1

? 1 _1 ' '
. i(n1 91 + n, 92 -) p{o}nl n, o , (12)
where
(13)
wl = k Vl” + \)lQl ,

N
and the matrix elements are operators similar to <:0 |12 I/g and

{l21] 0 »:



,kz(l)--k,nl(l)=n + v R

)
nz(l) ==V, {0} > (with certain

terms that vanish under ! omitted)

2
|
\
i © 27
; . , e,e N exp(iv,.B")
! - 17272 21
| =
| D) f L de I d8 3 53
| vlvz o o inA(k™ + 2'" + k)
| » k0 \Jlﬂl 3 _ 2 y
m, 3v1” m vy avlJ_ mlﬂl agl
I
- . /v ' /’ ' h
s lvl_l_ 5 ﬁzVZl\_’_ lnl J, {2V1L\)
' v Q v,t R , m,v v.\ Q
1\ M 2 2 ' 1y

ﬂ'vu\ " ) .
. J exp(it - Q. ’
\ // 21

2 1 1 1’
Q . 2 _ "
n, - v, » {0} | 6L, I n; n,
n 2) _ 0 ! {0}' >
2 2
> T 2m " - e1e2 exP(iVlz B")
= e ds 2.2 2. 2
24n°(k” + "7 + k)
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) exp(it - Q)

//’1" \ ’/"211
. 3 el U v

1 ]
. exp(i[n1 -n, -, 18

P J '

L V1 + n, -n ‘ Ql / vy + n, 92 )
1
] k3 k3 Gy o -my 8y
my Bvl” m, avzn mvyy avl__L
' A
o bprmle, @x |l . 1 3|
Mo, asz mIQl 391 mZQZ 392 ‘”
/
w0 " /" " N
tn, ,(“’u)J LV,
- ' H
mlvll Vl + nl - nl Ql Vo + n, 92
" ] ,/" . /n \
L n, ' ; L VL ~J, '/ L Vou | [
- _ ‘ ! ) .
mVer Vi + n, - n _\Ql ; vy + n, Qz /
. Y
-

It should be noted that in writing these expressions we did not use

the fact that Dy, Ny oen = O ; the relations n3(°)= n3(1), etc.

were sufficient.

1 -1
In the asymptotic limit ¢t >> (k¥) . mpo . (Kcorr

w1,

it is seen that eq. (12) contains cyclotron resonances, which are strongly

dependent on the ratios Qo / Qo' . We assume as before that large
values of the n's are irrelevant, and make the following simplifying
assumption, which i1s violated if the ratios are close to but different

from ratios of small whole numbers:

-4
19,4

(15)
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1 ] -
Q, -n, Q 1

t> | n 18 ~ny % |

n for all

1 -

small values of the n's for which n.Q Q

]
1% "0 TRy By kO (16)

(In principle, the results are easily extended to cover situations

in which assumption (16) is not satisfied.) Then we have the resonance
' ]

1 ey BT,y

give the highest power of t in the asymptotic limit. Important

condition that the terms of eq. (12) for which n

special cases are:

(1) Qo = Qo R so that n; + n, =0,
1l 2
] 1
(i1) Qc / Qo irrational, so that n, =n;, n, = o ,
1 2
(1i1) Qa / Qc ratio of small whole numbers, leading to cyclotron
1 2
resonances.,

!

Upon integration with respect to the variable ¢ =g - “191 s

eq. (12) reduces to

£1) = [002°°%) + 0}t + ... ]

+ [ X2t<[ 2 2 2 Z GKr(nlﬂl - nl'Ql - nz'Qz)

n, ¢ ' '
L 172 n1 n2

N
« exp(- 1n1[el + Qlt]) gN—l T f dk

t 1] , 3
g l12] N6 (u ) {l21|n; n, >p{o}n1'n2' (0) [-+ oA t) + ... ]

+ 004 +00%tH + L1+ L, (17)



- 15 -

where in the ordering we disregard the factors t in the exponents.

In the weak coupling approximation, we neglect O(Alto), 0(A3t1),

O(Astz), etc., compared with Aoto, thl, 14t2 s +»« Tespectively.
Therefore
af (1) _ of (1) _ ,2 Kr ! !
T WTN Aggz'z.‘s (nyfhy = my 9 =y )
172 n, n,
!
« exp(- inl[e1 + Qlt]) I f dk J
2
‘ ] ]
cnpl12] > 6w ) {]21]n 0, >
) 1
2n 2n del dez D, D
. f I 7 21 exp(in1 61 ) exp(in2 92 )
o o
] 1 4
. fo,Z(l’ 2; 8, , 92 3 O) +0(A't) + ... . (18)

There is no problem in generalizing the analysis which

shows that the expression O(Aat) + ... can be dropped if fo 2(1, 2; 0)

is replaced by a product of single particle distributions evaluated at

time t. In this case, the replacement is

2 1 '
A
ﬁ;ﬁ;' £(1, t) exp(in1 Qlt)f(z,t) exp(1n2 ta) .

so that the oscillating factors cancel. After setting A = 1, we write

the final result as follows:
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A
F) = £, ¥pp 90 0 = Lo fQu vy v o ®

1

+ exp(- inlel) s (19)

A
9af(1, n,)
> 1 2 - Kr ' A
—— + ing £Q, n)) g ) ' ) R A N
n

Zn; n,

. f dkf <n1|12|>6_(w12) {|21] nl'nz' >?(1, nl')?(z, nz') . (20)
2

Written out in detail, eq. (20) takes the form

A
af(g;s VIJI ’ v].l’ nl’ cl’ t)

A
+ 1n191 f(gl, VlH ’ v]_.l’ nl, 01, t)

ot
e 2e 2
172 Kr ! '
=l -5~ I 1, 7m0 -n,0)
g 2n '
2 nl n2
° f dk“ m2 f dng deH f Z“VZJ.deLZ Z
L o o V1 V2
> Zn exp(iv,, 8 ) k
! v SXPUV9y 1 _»
. 17di ds 2. 2. 2] |= v
ky‘+ 2 “+ 1 71|
o o Il
T o [. N
L
. ViR, . ; */lvu\?.r ,zvu/;
v, av, _ \ma. * 3Q vi Ve \Tay
11+ 1L 171 1 ” 1 \ 1 J/ 2 \"2 ya
iy
' ' /;l
L n ' L v v '
+ m vl v Q = v ( Q = o exp(1L - 921)
1V 1 \*1 2\ 2
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® 27
-1 ' [ ]
*m 5_(k”[V1” - V2"] + Vlﬂl - 0292) I L"da f ds
o o

eXP(iVIZB") 1 t
exp(i[n, - n; -n, I8
k"2 + 9,"2 + KZ 1 1 2

) exp(iL - 9; )

£ vl.l. ,’ L vz_l\ l_c-u 3
) Jv +n, -n Q Jv n ' Q m, ov
t O T AN 2+ ™2 2 /1™ V1Y
1
) . (vy + 0y -y )0y
m2 3v2" mlvll 3v1l
' ~
(v2 + n, )92 3 : zu 1 3
- - x —
BVar Mo {\' ™ Y

L v L n L v
-3 ' ). 2+ ' I, eatlig
V2t \ % A TR T T BN Vgt mp
-
A ' A '
¢ f(le V1” s Vll’ nl ’ ol’ t) f(gza.vzlr VZL) n2 ’ 02’ t) > (21)
where

\

£

'n—l 6§ _(w) = 6(w) -

= |+
£ |
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DISCUSSION

The kinetic equation (21), while not properly taking into
account collective effects, nevertheless is a generalization of previous
results, because it includes both transverse-diffusion terms and
nongyrotropic terms. The appearance of the cyclotron-resonance factor

is a new feature.

Our discussion here is limited to the comparison of special
cases of eq. (21) with previously known kinetic equationsl_a s with all
collective factors replaced by cutoff parameters. Discussions of the
present state of the kinetic theory of transverse diffusion will be

found in IVa and in papers referred to there.

The collision integral due to Eleonskix, Zyryanov, and S:Lll:l.n[+

was mentioned in Section IVa. 8. Their result was for a gyrotropic plasma

with an inhomogeneity in the 3§ direction only ('slab geometry"). Im

writing the noncollective version of their result (17) in the form

-1
(IVa.8.1), we set their collective factor Ao 1 equal to (kx2 + k 2 + k 2)

y z
In fact, it should be set equal to (kx2 + ky2 + kzz)-l 6(ky - ky'), in which
case (IVa.8.1) reduces to our result (IVa.8.2). For the multispecies plasma,
we may obtain their result as a special case of our egqs. (19) to (21),
putting x = 0 and leaving the range of integration of the wave numbers

indefinite:

af(Qly’ v]-” ’ vll’ ol’ t)
at

2 2 o
e e
1l 2 3
- E T f dk)| f Ay f dQyy ™, f AT
2

-

.
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k v,
| ] 9
. f 21 Vo z E — + 171

ov m,v v
o Vol 1 1 171 "'
L
X 3| s(kylvay - vyl + V.0, - v.2.)
m R, Q) U1~ 2 11~ "2%2
1 T, ‘av. )
. ] | I i exp( VZI.B) ; / vlL : lvz 1)
2 | ’ ’
y 2 Voo 2,
Ry + 2 11, 2 \
2 k k
+ exp(if Q,,.) I
21 m m
y ey 1 1lI 2II
P s ST R S S Yy a e d
v, v, myV v,  mQ, 3Q t o 3Q
MV Ve MV Vo By Mgy Mot Ny
* f(Qly’ Vl" ’ vl.L’ 01’ t) f(sz’ VZH, VZL’ 023 t) s (22)
where 22 = g 2 + & 2 B = arctan(f_ /2 ) = arg(f_ + if ). The derivation
x y ° y ox x y. o

in the form

of (22) from (21) is apparent upon writing ’ f dly ces
1 f d%y' .o L J [ dly" ...] * . Since this factor is real, we were able
to drop the Principal Value term from the &_ function.

The assumption of slab geometry is expected to be a good first
approximation in many situations for which the magnetic field may be
taken to be uniform, and the plasma to be homogeneous in the 2 direction.
The model is meant to describe a local region of a large plasma boundary

layer; the boundary may be arbitrarily sharp. Therefore eq. (22) is of

more than academic interest. The presence of the Dirac delta function
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is expected to simplify considerably the study of the equation, since
such a delta function is essential for the usual proofs of total
energy conservation, the H-theorem, etc. Much work remains to be done
in this direction.
Let us now leave the diffusion problem, and study eq. (21)
i for the homogeneous case, in order to make contact with the results

A
of Sundaresan3. When £(1, nl) is independent of 91’ eq. (21) reduces to

2£(1, n) R
—— + 2 £, n)

= ] 2e 2e 2 ) GKr(n Q, - n

2 . . 1% Q, - n, 9

171

1]
N I T 1 S T s Wl A s T
11 TVu mlvlLJvl(klvl.L/ %)

\ kv
1714 14°24% -1 _ _
. J \—————:) J\)2 1 6_(k||[v1|| v2”] + vlﬂl vzﬂz)

r -
K, vy, kv\ k
.3 N U e TS B | G-
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! ! J _ (kv /)

. (vl + nl n1 )Ql 3 ) 0, k1 21 + n, ny 114771

™MVt VL ™V Jvl +n, - nl' (kyvy,/9y)

' )
' J v(k v, /2.)
) .Eﬂ 3 _ (v2 + n, )92 3 ) n, kL vy + n, 1 24772
m, 3v2” MV, sz_L m, vy, J\)2 + nz' (kLVZL/QZ)
A 1. A '
- £Q1, n, ) £(2, n, ) (23)

if « 1is set equal to zero. We have assumed that t >> Ich-l and that
t > | Q - ch|- 1 when @ L Qo,(cf. eq. (16)). Equation (23) is to be
compared with Sundaresan's result (38), (39), (30), (24), when his
collective factor p is set equal to k2 and Jrz(Nl)Lr is set equal
to qr/k2 .

While the results are very similar, it is apparent that they
disagree in a number of ways, most of which can be attributed to
trivial errors. One source of disagreement seems to be somewhat more
interesting than the others; namely, that our factor 6Kr(n191 - nl'Ql - nz'Qz)
appears to be missing from Sundaresan's result. It is thought that this
difference might represent a deviation of the Prigogine theory for
asymptotically large times from the Bogoliubov theory with the adiabatic
assumption fz(t) = fz( e | fl(t)), for the homogeneous nongyrotropic
plasma.

At the time of writing, a clear understanding of this matter
did not exist, but was imminent. The deviation apparently does not
represent as important a difference between the two theories as might

be expected at first sight. Slight changes in the assumptions and methods

may completely reconcile the results.



-22 -

Before discussing this further, we mention specifically
one of the trivial errors; namely the absence of the other Kronecker

delta function

Kr ' LI d '
8 (nl -n; -nu z f d8 exp(inlB)

] 1]
* exp(-~ inl B) exp(- in2 B) .

The method by which the error can be corrected suggests a possible way

of making the "ring approximation" tractable for the nongyrotropic plasma,
and deriving by the Prigogine method an equation analogous to the
Balescu-lLenard-Guernsey equation, for the homogeneous plasma and

possibly also for the diffusing plasma. The direction of attack is
especially transparent for the single species homogeneous plasma, and

the result should agree with a corrected version of Sundaresan'’s resuit.

0f course, one would first have to justify the use of the '"ring
approximation', by some simple modification of the weak coupling
approximation. If the assumption t >> lQ|-1 is not made, the justification

may be more difficult than for models previously treated.

The factors {exp(inB)} are absent from Sundaresan's results
because he chose a coordinate system for which B8 = 0. This procedure
breaks down when k 1is not a fixed vector. One is not always working
under the integral sign f dk, because it is necessary to make a

Fourier transformation of the distribution function with respect to 6.
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The correction would consist of multiplying each single
particle distribution by a factor of the form exp(inB8), and including

the B8 integral. For the collision integral of the Landau type, the

4

Kr

]
result i1s an extra factor § (nl - nl' -, )}; for Sundaresan's

equation, it would be more complicated.

The difficulty in summing the ring diagrams for the nongyrotropic

| \J ] f 4

n1 Ql - n2 92 - N, 0, = e

Kr
plasma stems from a factor § (nIQ1 - 3 93
anal s (n. 0 "a '2.). The i '
analogous to (n1 1 -0 & -0, 2). e integer n

= Dpy1Tpyq)

p41 aPpearing in

) ] ]

t |
~
<: ]P+1 RI n R n P+l - depends on My My 5 «ee 5 D R® *°* s> M p SO
that recurrence relations of the usual type are difficult to obtain. But

L] '
the treatment of (SKr(n1 -n; -n, ) is very suggestive. One might write

Kr ! '
S L T T SRR YLLK
T/2
= lim J dr exp(- in.Q.1) exp(in' Q.1)
Toreo T 11 11
~T/2

©ororoexpldn 5,0, 1),

and place the factors {exp(- icht)} next to the factors {exp(inB)},
effectively replacing B8 by B-QUT. The integration over 1 (and B)
would then be postponed until after the diagrams are summed. One would not,
however, get back the simple Kronecker delta functions; instead, the

collective factor would be more complicated than for the gyrotropic plasma.

For the single species homogeneous plasma, the introduction of <

is unnecessary. The factors {exp(inB)} are sufficient.
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We now make some provisional remarks concerning our factor
SKr(nlﬁl - nllﬂl - nz'QZ) in eq. (23), and its absence in the non-
collective analogue of Sundaresan's equation. At the time of writing,
the origin of the discrepancy remained in some doubt, and will therefore
not be discussed in detail here.

For a detailed examination of this point, it is evident that one
must carefully check the Tt integrations in Sundaresan's work, and
his treatment of the oscillating time-dependent factors. We note that
his equation (24) contains 5+(r;s), instead of the factor 6+(r—n; s+m)
which would be expected from our result. Also, the factors analogous
to our factors exp(- 1n191t) exp(inl'Qlt) exp(inz'ta) (cf. eq. (1R) ff.)
do not appear in his final results.

It is possible even in the Prigogine theory to base the
calculation on the first equation of the BBGXY hierarchy. One could
retain the first order contributions to the two particie distribution
which depend on t through f£f(v, t), possibly also including oscillating
factors when ring diagrams (collective terms) are taken into account.
Contributions dependent on initial correlations would be neglected. In
such a theory, it is somewhat difficult to see how the cyclotron rescnance
condition could appear. One can readily understand the restriction
nl' + nz' =n; which occurs because the k integration results in
cancellations due to invariances with respect to rotations of the
x-y coordinates. It would appear at first sight that no other dependence

) ]

relation between n, , n,

1 and n1 should exist, because the selection

| \ A ] A \
of variables n; , n, for the contribution of f(1, ny ) £(2, n, ) to

A
fz(l, 2. v, + n

- h .
1 1° v2) should depend on 21 + ny rather than ny alone
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The discrepancy disappears if it is remembered the functions‘ ?
oscillate rapidly in time. The slowly varying quantity is
exp(inlﬂlt) g}l,nl). If we multiply eq. (23) by the factor exp(inlﬂlt),
we see that the dominant contribution to B(exp(inlnlt)?(l,t))/at
occurs when exp(inlﬂlt) = exp(inl'Qlt) exp(inz'ta), so that the
right side will not contain rapidly oscillating factors which tend to
average to zero. The precise justification rests on the above calculation:
it can also be made plausible from an argument based on some ''coarse-

graining" of the time variable.

It is therefore likely that the noncollective version of the
two theories are essentially in agreement when our simplifying assumption (16)
is made. This may no longer be true when collective factors are included,

but a detailed study has not yet been completed.

g
E]
o
o
3
by
3
9
-

he two Kronecker delta functions in eq. (23), we obtain

the restriction
|
n, (92 - Ql) =0 .

Thus for a homogeneous nongyrotropic plasma relaxing with a time scale

t >> IQol‘l, |a 'I—l, IQU - QU'I—l » the Landau collision integral

o
predicted by the Prigogine theory contains a "selection rule” which
eliminates all interactions between the nongyrotropic parts of the

)
velocity distributions of species o and o with different gyrofrequencies.

Such interactions are, however, expected to be present when collective

factors are included.
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